Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Salypa, S. V."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Method of Verification of Hypothesis about Mean Value on a Basis of Expansion in a Space with Generating Element
    (Allerton Press, Inc., 2018) Zabolotnii, Serhii; Заболотній, Сергій Васильович; Martynenko, S. S.; Salypa, S. V.
    In this paper it is proposed an original method for verification of statistical hypotheses about mean values of random quantities. This method is based on Kunchenko stochastic polynomials tool and probabilistic description on a basis of higher order statistics (moments and/or cumulants). There are represented analytical expressions allowing to optimize decision rules using certain qualitive criterion and calculate decision-making error. It is shown polynomial decision rule in case of polynomial power S = 1 corresponds to classic linear decision rule which is used for comparative analysis. By means of multiple statistical experiments (Monte–Carlo method) obtained results of Neumann–Pierson criterion show proposed polynomial decision rules are characterized by increased accuracy (decrease of the 2nd genus errors probability) in compare to linear processing. The method efficiency increases with increase of stochastic polynomial order increase of degree of random quantities distribution difference from Gaussian probabilities distribution law.

DSpace software and Cherkasy State Business College copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback